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Traffic Scheduling and Revenue Distribution among
Providers in the Internet: Trade-offs and Impacts

Hyojung Lee, Hyeryung Jang, Jeong-woo Cho, and Yung Yi

Abstract—The Internet consists of economically selfish players
in terms of access/transit connection, content distribution. Such
selfish behaviors often lead to techno-economic inefficiencies such
as unstable peering and revenue imbalance. Recent research
results suggest that cooperation-based fair revenue sharing, i.e.,
multi-level ISP (Internet Service Provider) settlements, can be a
candidate solution to avoid unfair revenue share. However, it has
been under-explored whether selfish ISPs actually cooperate or
not (often referred to as the stability of coalition), because they
may partially cooperate or even do not cooperate, depending
on how much revenue is distributed to each individual ISP. In
this paper, we study this stability of coalition in the Internet,
where our aim is to investigate the conditions under which
ISPs cooperate under different regimes on the traffic demand
and network bandwidth. We first consider the under-demanded
regime, i.e., network bandwidth exceeds traffic demand, where
revenue sharing based on Shapley value leads ISPs to entirely
cooperate, i.e., stability of the grand coalition. Next, we consider
the over-demanded regime, i.e., traffic demand exceeds network
bandwidth, where there may exist some ISPs who deviate from
the grand coalition. In particular, this deviation depends on
how users’ traffic is handled inside the network, for which we
consider three traffic scheduling policies having various degrees
of content-value preference. We analytically compare those three
scheduling policies in terms of network neutrality, and stability of
cooperation that provides useful implications on when and how
multi-level ISP settlements help and how the Internet should be
operated for stable peering and revenue balance among ISPs.

I. INTRODUCTION

A. Motivation

The Internet is a system where the entities such as EUs
(End Users) and content/eyeball/transit ISPs (Internet Service
Providers)1, having different economic perspectives, compete
and cooperate in a highly complex manner. Eyeball/transit
ISPs connect EUs to the Internet, and content ISPs inject
and deliver contents into the Internet [2], e.g., videos, web
pages, and files. The major interest of such providers, which is
often selfish, is to maximize their profits, sometimes incurring
techno-economic inefficiencies in the Internet. For example,
ISPs’ selective peering with other ISPs may have negative
impact on Internet’s connectivity. It is reported that some
providers express economic complaints on revenue imbalance
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1ISP is sometimes called just ‘provider’ throughout this paper.

among them, see e.g., [3], [4]. One of the central issues
regarding such complaints is how to fairly distribute the
revenue from the users to the providers.

There have been recent research efforts on fair and efficient
revenue sharing among providers, using the notion of Shapley
value (SV) [5] from cooperative game theory. The SV is a
fair payoff distribution scheme and presumes that the grand
coalition (i.e., the coalition containing all players) is agreed
by the players. The SV based revenue sharing hypothesizes
that the profit distribution is achieved at a multilateral, global
level, rather than a bilateral, local level, thus leading to the nice
features in terms of fairness, efficiency, and interconnection
incentives, see e.g., [6] and [7].

However, it is questionable that the providers would ac-
tually form the grand coalition, referred to as stability of the
grand coalition. This stability issue in the Internet ecosystem
is of critical importance, because, if unstable, in spite of its
nice properties and benefits, multi-lateral settlements would
not be realized in practice. This motivates us to study how
stable the grand coalition is under what conditions such as
how overloaded the network is. We can consider two regimes,
(i) under-demanded and (ii) over-demanded, depending on
how large network bandwidth is offered compared to users’
traffic demand. The case of over-demanded network may occur
due to fast technical advances of edge devices, e.g., smart
phones/pads and smart TVs, but slow upgrade of network
infrastructures. Note that an over-demanded network may
significantly change how we should technically treat the issue
of stability. Roughly, the stability of the grand coalition with
SV can be studied by checking the existence of sub-coalitions
in which all players in that coalition can be better off with
SV. In the over-demanded case, the individual share depends
on how the edge networks sift out a part of user demands to
meet the capacity.

B. Related Work

In the 1990s, Bailey [8] explored the economic factors
with providers’ settlements based on Internet interconnection
architecture and Huston [9] described the challenges of ISPs’
business models against the telecommunications market. In the
current debate on revenue sharing alignment in future Internet
cooperations, Ghezzhi et al. [10] and Zwichkl et al. [11]
depicted the interconnections value network for the future
Internet ecosystems, especially they developed the technical
guideline for providers to increase revenue opportunities in
the marketplace. Moreover, Faratin et al. [12] paid attention
to the asymmetry of content ISPs and eyeball ISPs thus they
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observed the appearance of paid peering among ISPs. All
these studies imply possibility of unstable peering and revenue
imbalance among the Internet providers.

To tackle the possible unstable peering and revenue im-
balance in the Internet, people have studied multi-lateral
settlements among providers, where cooperative fair revenue
sharing is the key idea. Examples include the researches on
the revenue sharing mechanisms based on proportional fairness
and NBS (Nash Bargaining Solution) [13]–[16]. Ma et al. [6]
studied the revenue sharing based on the Shapley value, and
presented its nice properties that yield globally optimal routing
and interconnecting decisions. They also derived closed-form
SVs for structured ISP topology composed of content, transit,
and eyeball ISPs. In addition to SV’s application to providers’
settlements, SV has also been applied to many other network-
economic problems, e.g., peer-assisted services [17], viral
marketing [18], and virtual infrastructure sharing [19].

Despite the interesting results on the fair revenue shar-
ing as presented above, it has been under-explored whether
the providers are actually willing to agree to multi-lateral
settlements, i.e., stability of the grand coalition. The grand
coalition’s stability has been extensively studied in cooperative
game theory, e.g., [20]–[22]. Ma et al. [6] have only conjec-
tured that the ISPs’ grand coalition with SV based revenue
sharing is stable.

C. Summary

In this paper, we consider various traffic scheduling poli-
cies at the edge, each of which presents different degrees of
content-value preference and network neutrality, and compare
them in terms of coalition worth and stability of the grand
coalition. To that end, we define a coalition game, called
Revenue Sharing Game (RSG), where the players are eyeball,
transit, and virtual content ISPs. The notion of virtual content
ISP, which is a triple of content ISP, content, and region, is in-
troduced with the goal of accurately modeling the cooperation
decision of a content ISP.

Following the defined coalition game, we first prove that in
under-demanded networks, the coalition worth is maximized
at the grand coalition, which is always stable with SV based
revenue sharing. This formalizes the result conjectured in [6].
Second, in over-demanded networks, where traffic scheduling
is an important factor, we prove that the scheduling absolutely
prioritizing higher-value contents (called PP: Priority Policy)
maximizes the worth over all possible scheduling policies.
Also, we prove that the scheduling which (relatively) as-
signs higher weights to more profitable contents (called RPP:
Revenue Proportional Policy) always generates more worth
than the content-agnostic scheduling (called TPP: Traffic Pro-
portional Policy). However, in terms of the stability of the
grand coalition, even under PP, which is a worth-maximizing
policy, the grand coalition may not be stable. We provide
sufficient conditions where a scheduling is better than another
scheduling in terms of stability. Under the conditions, more
content-oriented scheduling tends to be “more stable” than
content-agnostic one. Interesting trade-offs are observed here;
PP or RPP requires much more complex operations, such as

TABLE I
SUMMARY OF MAJOR NOTATION

Variable Definition
C, and B, T Set of content ISPs, content ISPs,

and transit ISP
R Set of all regions
Q Set of all contents
Qi Set of contents serviced by the content ISP Ci

Qr Set of contents demanded by the users
in the region r

Cq Set of content ISPs that serve the content q
Cr Set of content ISPs that serve

at least one content in Qr
Ci i-th content ISP
Cir,q Virtual content ISP of i-th content ISP,

serving content q to region r
Br Eyeball ISP which covers the region r
Xr Fixed average user population of the region r
Xr,q Average user population in the region r

that has demand for content q
βq Average revenue of the content q
sq Average traffic volume of the content q
nr Link capacity between Br and the transit ISP
yr Total potential traffic volume in the region r

priority scheduling or weighted fair queuing, whereas TPP can
be realized by a simple FIFO scheduling.

Our work is highly motivated by [6] in the sense that
Shapley value based revenue sharing is beneficial in the
economic and engineering sense, but the followings are the
key differences: First, in [6], the authors assumed that the
network is only under-demanded, i.e., traffic demand is small
enough, and only conjectured that with Shapley value based
revenue sharing the grand coalition would be stable. In this
paper, we formally prove its stability. We further studied the
case when the network is over-demanded, i.e., traffic demand
exceeds the network bandwidth, in which case the way the
traffic is handled has significant impact on the stability. To
this end, we consider three traffic scheduling algorithms (TPP,
RPP, and PP) and analyze how stable the grand coalition is
with the Shapley value based revenue sharing, under what
conditions. We highlight that scheduling policies and stability
of the grand coalition is highly inter-coupled, whose analysis
was challenging. We have theoretically clarified the stability
degree of those three scheduling algorithms. In our preliminary
work [1], [23], only a small set of examples is provided hinting
that some of traffic scheduling policies can impact the stability.
Also, we considered only a single region network, but now
we extend it to a multi-region network, thus more general and
practical setting, with full proofs of analytic results.

II. MODEL

A. Network Model

We consider a network consisting of a transit ISP T , a
set C of content ISPs, and a set B of eyeball (or access)
ISPs, where we denote by N = C ∪ {T} ∪ B the set of
all “providers.” The transit ISP offers connectivity between
eyeball ISPs and content ISPs. For simplicity and tractable
analysis, we assume that there is just a single transit ISP and
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all eyeball ISPs and content ISPs are connected to the transit
ISP, and no direct connection between any content ISP and
eyeball ISP exists. Eyeball ISPs connect residential users to
the transit ISP. Denote R as the set of all regions served by the
set of eyeball ISPs B. We also denote by Br the eyeball ISP
which covers the region r ∈ R, where we assume that there
does not exist a region covered by multiple eyeball ISPs. Let
nr be the link capacity between Br and the transit ISP. The
content could be delivered from a content ISP to the requesting
destination region r via the transit ISP and the eyeball ISP Br.

Let Q be the set of all contents in the network. Note that
a content can be served by multiple content ISPs. Each region
may have a different set of contents to download, for which
we let Xr,q be the average user population in region r that
has demand for content q ∈ Q. We assume that users are
oblivious to content ISPs in downloading contents, i.e., when
downloading a content q, users do not differentiate content
ISPs (that serve q). We denote Cq as the set of content ISPs
that serve the content q. Let Qr ⊆ Q be the set of contents
demanded by the users in region r, and Cr be the set of content
ISPs that serve at least one content in Qr. In other words, the
set Cr is the union of the sets of content ISPs that serve the
contents in Qr, thus Cr = ∪q∈Qr

Cq. We let sq be the average
traffic volume (in bytes) of the content q, and βq be the average
revenue of the content q, i.e., the per-content revenue earned
by the content ISPs serving q.

T

Br1

Br2

Br3

C1

C2

C3

r1

r2

r3

Qr1 = {q1, q2}

Qr2 = {q2}

Qr3 = {q3}

Q1 = {q1, q2}

Q2 = {q1, q3}

Q3 = {q2, q3}

Fig. 1. An example network with three content/eyeball ISP and one transit
ISP.

Example. Fig. 1 exemplifies our model, where there exists
three content and eyeball ISPs with one transit ISP. Content
ISPs C1, C2, and C3 serve the content sets {q1, q2},{q1, q3},
and {q2, q3}, respectively. Regions r1, r2, and r3 are covered
by eyeball ISPs Br1 , Br2 , and Br3 , where the regions r1,
r2, and r3 request the cotent sets {q1, q2}, {q2}, and {q3},
respectively. The request for q3 in region r3 can be served by
either of C3 or C2.

Notation. We use the lower-case i, r, and q to index a content
ISP, a region, and a content, respectively. For consistency, we
place r and q in subscript and i in superscript. Thus, we often
use Ci and Qito refer to the i-th content ISP and the set of
contents served by Ci.

For any coalition (i.e., a set of ISPs) S ⊂ N , we denote by
a[S] the restriction of a by S, e.g., R[S] is the set of regions
served only in S.

B. Demand and Traffic Scheduling

Let yr be the “original” traffic demand in region r, rep-
resenting the total traffic volume requested by the users in
region r, i.e., yr =

∑
q∈Qr

sqXr,q, where sqXr,q corresponds
to the traffic volume from the region r to access the content
q. We say that the region r is over-demanded if yr > nr, i.e.,
the total traffic demand in region r exceeds the link capacity
between the eyeball ISP Br and the transit ISP, and that a
network is over-demanded if there exists at least one over-
demanded region in the network, otherwise a region or the
network is said to be under-demanded. 2

An eyeball ISP will take some traffic shaping action, called
traffic scheduling, if its serving region is over-demanded, so
that its actually-served traffic volume does not exceed the link
capacity. We consider a family of traffic scheduling policies
abstracted by a function f subject to the following natural
condition:∑

q∈Qr

sqXr,q · f(sq, βq, nr, Xr,q) ≤ nr (1)

where 0 ≤ f(·) ≤ 1. A scheduling policy can be regarded
as a traffic shaper which reduces the original per-content
user population Xr,q, thus the value of f(·) corresponds to
the portion of user population that “survives” under a given
traffic scheduling policy. We study the following three policies:
TPP (Traffic Proportional Policy), RPP (Revenue Propor-
tional Policy) and PP (Priority Policy), as formally stated in
Table II 3. These three policies have diversified degrees of
implementation complexity, required information, and content-
value preference. For example, PP assigns absolute priority
to higher-value contents, whereas TPP is indifferent to the
content values, and RPP gives higher weights proportional to
the profits generated by contents.

We can (arguably) say that TPP is more network-neutral
than RPP (similarly, RPP is more network-neutral than PP)
due to their different, restricted handling of network traffic,
depending on content values. Moreover, TPP can be imple-
mented by droptail queue, which is the simplest one among
three scheduling policies whereas PP or RPP requires more
complex implementation such as priority queue or weighted-
fair queue.
Example. An illustration for three traffic scheduling policies
is given in Fig. 2 with two content ISPs, one eyeball and
one transit ISP, where two contents (music and video, denoted
by q1 and q2, respectively) are served by each content ISP
(the region index r is dropped here to simplify exposition).
The region is clearly over-demanded, because the total demand
(5MB/s × 1000 + 200MB/s × 100 = 25GB/s) exceeds the
capacity (5GB/s). The music’s total traffic volume (s ·X) and
the per-content revenue (β) are smaller than each of those of
the movie, but more populations want to download the music.

2These two regimes are defined on the average of the time-scale when
eyeball and transit ISPs’ infrastrctures and content distributions are regarded
as quasi-static. Also, these different regimes may be defined by considering
only when the Internet access is actively made, e.g., daytime, because at
nighttime the system will be mostly under-demanded.

3In the description of traffic scheduling policies, we often use the notion
of normalized content value for a content q, βq/sq .



4

TABLE II
TRAFFIC SCHEDULING POLICIES: TPP (TRAFFIC PROPORTIONAL POLICY), RPP (REVENUE PROPORTIONAL POLICY), AND PP (PRIORITY POLICY)

f(·) Operation

TPP min

(
1, nr∑

q′∈Qr
sq′Xr,q′

)
All traffic is treated neutrally, and Xr,q is reduced in

proportion to the traffic volume of q, sq.

RPP min

(
1,

βqnr

sq
∑

q′∈Qr
βq′Xr,q′

)
Xr,q is reduced in proportion to the amount of revenue of
q, βq .

PP min

(
1,

[
nr−

∑
q′∈Hr,q

sq′Xr,q′

sqXr,q

]+ )
A content with higher βq/sq is absolutely prioritized.
(Hr,q is the set of all q′′ ∈ Qr s.t. βq′′/sq′′ > βq/sq)

T

C1

C2

B

Q = {q1, q2}

Q1 = {q1}

Q2 = {q2}

n = 5 GB/s
q1(music)

q2(video)

s(MB/s)β($) X
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1
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RPP
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q1 q2
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Capacity Sharing (total 5 GB/s)

q1

q1

q1

q2

q2
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1

1

1
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1

Fig. 2. Example of traffic scheduling policy.

In TPP, the capacity is allocated according to the total traffic
volume, i.e., 5 : 20, whereas in RPP the total revenue is used
to split the traffic, i.e., 1$ × 1000 : 10$ × 100 = 1 : 1.

Finally, in PP, the absolute priority is given to the content
with higher normalized value, which is the music. In our
example, the music’s traffic volume is as same as the capacity
n, and thus the video cannot be served at all in PP.

III. REVENUE SHARING GAME (RSG)

In this section, we define a coalition game [24] from co-
operative game theory, called Revenue Sharing Game (RSG),
followed by necessary preliminaries.

A. Game Formulation

We denote a coalition game with a coalition structure, by
(N , v,P), where N is a set of players and the game has a
transferable4 utility characterized by a worth function v, which
is v : 2N → R and v(∅) = 0. The worth function associates
with any coalition S ⊆ N the value generated by cooperation.
A coalition structure P is a partition of N . For example, P =
{{B, T,C1}, {C2}} is a partition of N = {B, T,C1, C2}.
The case when P = {{B, T,C1, C2}} = {N} is called grand
coalition, for which we use just (N , v) for simplicity, unless
confusion arises.

Players in our RSG should be the providers. Transit and
eyeball ISPs are naturally included in the player set. For
content ISPs, we introduce a notion of virtual content ISP,
identified by (i) a content ISP, (ii) a region, and (iii) a
content. Denote by Cir,q the virtual content ISP of i-th content
ISP, serving content q to region r. The main objective of

4Utility is transferable if players have a common currency that is valued
equally by all, thus a part of a player’s utility can be losslessly transferred to
another player [25].

introducing virtual content ISPs is to assign finer granularity
to the coalition structures for the purpose of reflecting the
practice more accurately. Examples include (i) a content ISP
such as Google decides to stop serving some contents to South
Korea, or (ii) two content ISPs (excluding the rest of content
ISPs in the Internet) form a coalition with just localized
contents to serve the population in specific regions.

We define the worth of a coalition S as the total revenue
earned by the players included in the coalition S. As is done
in [7], for a given S, we decompose S into atomic coalitions
Sr,q, so that an atomic coalition includes just one eyeball ISP
Br in some region r, a transit ISP T, and a set of virtual
content ISPs Cir,q that serve q ∈ Qr (that are only requested
by region r). Then, the coalition worth of S turns out to be
simply the summation of the worths of the decomposed atomic
coalitions, i.e.,

v(S) =
∑

r∈R[S]

∑
q∈Qr[S]

v(Sr,q), (2)

where the worth of each atomic coalition Sr,q is defined as the
total fee for accessing content q, paid by the users in region
r, v(Sr,q) = βqXr,qf(·).
Remark. There are two reasons why we include only content
access fee as a revenue source, despite the existence of other
revenue sources in the current Internet market, e.g., adver-
tisement fee to content ISPs and network access/transport fee
to eyeball/transit ISPs. First, the revenue sharing framework
considered in this paper presumes a scheme based on the
multi-level settlement among ISPs, i.e., the total revenue is first
determined to the group of ISPs, and then redistributed to each
individual ISP following a revenue sharing rule. Thus, in this
framework, other revenue sources can be modeled as being in-
cluded in content access fee. For example, network access fee
(charged to users by transit and eyeball ISPs) can be as small
as just the costs of maintenance, operation, and installation of
the physical infrastructures to survive competition [26], [27].
Note that even in such a case, eyeball and transit ISPs will still
get their additional share in our framework according to their
contributions. Other revenue sources largely corresponding to
each content, e.g., advertisement fee, can be modeled in the
value of each content.

Finally, we present the concept of super-additivity of a
coalition game (N , v), which means that a coalition achieves
larger coalition worth than what is achieved by its arbitrary
partition.
Definition III.1 (Super-additivity) For any coalition S, T ⊆
N such that S ∩ T = ∅, v(S ∪ T ) ≥ v(S) + v(T ).
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B. Shapley Value and Stability

Associated with a coalition game (N , v,P), the coalition
structure value is an operator ϕ which assigns values (or
payoffs) to every player in the game (N , v,P). We denote by
ϕi(N , v,P) a coalition structure value for player i. Shapley
provides an axiomatic approach to determine a coalition struc-
ture value ϕ, which reflects the following desirable properties
(as axioms): efficiency, symmetry, additivity, and dummy, see
[5] for details. It has been proved that the value satisfying the
four axioms is uniquely determined for every coalitional game
in the premise of grand coalition (N , v) (i.e., P = {N}). This
special coalition structure value is referred to as Shapley value
(or simply SV), which is also our focus.

Shapley value is characterized as: for any player i,

ϕi(N , v) =
1

|N |!
∑
π∈Π

∆i(v, S(π, i)), (3)

where Π is the set of |N |! orderings of N and S(π, i) is the set
of players preceding i in the ordering π, and ∆i(v, S) is the
marginal contribution of player i for a coalition S ⊆ N\{i},
i.e., ∆i(v, S) = v(S ∪ {i}) − v(S). Simply speaking, SV
is interpreted by the average marginal contribution over all
orderings of players. The axiomatic coalition structure value
for any coalition structure P (not just the grand coalition) is
called the Aumann-Drèze value (A-D value) [24]. Then, A-D
value for a player i ∈ S ∈ P is also denoted by ϕi(S) in
this paper. For simplicity, we use the term of “Shapley value”
for both Shapley and A-D values, because their axiomatic
structures are the same except that A-D values are computed
for arbitrary coalitions.

In RSG, the worth of S is represented as the summation of
the worths of the decomposed atomic coalitions, as (2). Since
the providers in each atomic coalition Sr,q share the worth
of Sr,q with SV, thus the total SV of provider i is also the
summation of the SVs of provider i in Sr,q , i.e.,

ϕi(S) =
∑

r∈R[S]

∑
q∈Qr[S]

ϕi(Sr,q). (4)

Note that each decomposed atomic coalition Sr,q is simple
[28] in the sense that each player’s marginal contribution is 0
or the entire worth of Sr,q , i.e., ∆i(v, S(π, i)) = 0 or v(Sr,q).
Then, it is easily derived by the definition of SV in (3): for
any coalition S,

ϕi(S) =
∑

r∈R[S]

∑
q∈Qr[S]

1

|Sr,q|!
×∑

π∈ΠSr,q

v(Sr,q) · 1{∆i(v,S(π,i))>0},

or,

ϕi(S) =
∑

r∈R[S]

∑
q∈Qr[S]

φi(Sr,q) · v(Sr,q), (5)

where φi(Sr,q) is called the Shapley portion of the player i
for coalition Sr,q , defined by:

φi(Sr,q) =
1

|Sr,q|!
∑

π∈ΠSr,q

1{∆i(v,S(π,i))>0}, (6)

where 1{·} is the indicator function. Provider i′s Shapley
portion in coalition Sr,q states the ratio of its quota to the
coalition Sr,q’s worth. A provider i’s SV in coalition Sr,q
depends only on its Shapley portion and the worth of coalition
Sr,q . Note that it is not affected by neither the worth nor the
Shapley portion of the other coalitions. This observation has
also been used in the prior work [6], which facilitates the
analysis of this paper.

We now introduce the concept of stability of the grand
coalition under the SV-based value distribution.
Definition III.2 (Stability of Grand Coalition [20], [21])
The grand coalition is said to be stable for a game (N , v)
with respect to the Shapley value ϕ, if for all S ⊂ N there is a
player i ∈ S such that ϕi(N , v,N ) ≥ ϕi(N , v, {S,N \ S}).

Intuitively, the grand coalition is stable under Shapley
value, if for any coalition S, there exists at least one player
i = i(S) (which may depend on the considered coalition S)
that becomes happier in the grand coalition than in S, thus
there is no reason to stay out of the grand coalition. We call
such a player i(S) Shapley-advocating player for a given S.

We now study various impacts of traffic scheduling policies
on the revenue of the providers that work in a cooperative
manner and the stability of such cooperative behaviors. To that
end, we start by studying the coalition worth in Section IV,
followed by the stability analysis in Section V.

IV. COALITION WORTH

It is immediately clear that in under-demanded networks,
the worth function of RSG is super-additive, and thus, the
coalition worth is naturally maximized by the grand coalition
regardless of the employed traffic scheduling policy. However,
in over-demanded networks, the worth function of RSG is no
more super-additive since the actually-served content traffic
amount is affected by the traffic scheduling policy. Thus,
we focus on the over-demanded network. To differentiate the
worth for each traffic scheduling policy, we use the notation
vT (S), vR(S), and vP (S) to refer to the worth functions of
TPP, RPP and PP, respectively, for a given coalition S. We
first state our main result on the coalition worth.
Theorem IV.1 (Coalition Worth: Over-demanded)
Consider an over-demanded network and the corresponding
RSG.

(i) The RSG under PP is super-additive. Thus, under PP, the
worth of the grand coalition is maximized with respect
to the worth of other subcoalitions.

(ii) For any given coalition S, the following inequality holds:
vP (S) ≥ vR(S) ≥ vT (S) for all S ⊆ N . Moreover, PP
is an optimal policy that maximizes the worth over all
possible traffic scheduling policies.

Interpretations. First, in (i), it is shown that there exists a
scheduling policy, which is PP, ensuring that the worth in-
creases as the coalition becomes larger (i.e., super-additivity),
thus the grand coalition is preferred under PP. This result is
not highly surprising because PP always assigns higher priority
to the traffic with higher content values. Second, in (ii), this
value-oriented feature in PP leads to the result that for any



6

given coalition S, PP is an optimal policy in terms of the
worth for S among all other policies.

Similar tendency can be seen between RPP and TPP, as
stated in Theorem IV.1(ii). To be more precise, consider two
contents qi, qj in a given coalition (with region r), where
assume that qi has a larger normalized content value than qj ,
i.e., βi/si ≥ βj/sj . Note that due to this difference in terms of
content value, a scheduling policy that assigns more capacities
to the contents with higher β/s will eventually generate more
worth than other policies which do not. From Table II, we can
check that the ratio of the assigned capacities to each content
is given by:

RPP:
βiXr,i

βjXr,j
and TPP:

siXr,i

sjXr.j
.

Also, from βi/si ≥ βj/sj , we have βi/βj ≥ si/sj . This
means that, for example, supposing that a unit capacity is
assigned to qj , then in RPP, qi, is allocated more capacity
than in TPP. This value-based inter-content preference in RPP
allows us to have more total worth than in TPP.

Proof: (i): Consider any two coalitions S and S′, S ⊂ S′.
Then, from the worth decomposition in (2), we get:

vP (S′) =
∑

r∈R[S′]

∑
q∈Qr[S′]

vP (S′r,q)

=
∑

r∈R[S]

∑
q∈Qr[S]

vP (Sr,q)

+
∑

r∈R[S′\S]

∑
q∈Qr[S′\S]

vP (S′r,q)

= vP (S) +
∑

r∈R[S′\S]

∑
q∈Qr[S′\S]

vP (S′r,q)

≥ vP (S).

(ii): All the proofs are based on the description of traffic
scheduling policies in Table II and the worth decomposition
in (2). Again, due to the revenue decomposition, it suffices to
prove for a per-region coalition Sr ⊂ S, r ∈ R.

First, we prove that for any (possibly over-demanded)
coalition Sr vR(Sr) ≥ vT (Sr). For notational simplicity, we
sometimes use si rather than sqi (similarly, βi and Xi instead
of βqi and Xqi , respectively), unless confusion arises.

From (2) and Table II, we get:

vR(Sr) =
∑

q∈Qr[S]

vR(Sr,q)

=
∑

q∈Qr[S]

βqnr
sq
· βqXr,q∑

q∈Qr[S] βqXr,q
,

and

vT (Sr) =
∑

q∈Qr[S]

vT (Sr,q)

=
∑

q∈Qr[S]

βqnr
sq
· sqXr,q∑

q∈Qr[S] sqXr,q
.

Thus, we have:

vR(Sr)− vT (Sr) (7)

=
nr∑

q∈Qr[S] sqXr,q

∑
q∈Qr[S] βqXr,q

(8)

×
( ∑
q∈Qr[S]

β2
qX

2
r,q

sqXr,q

∑
q∈Qr[S]

sqXr,q − (
∑

q∈Qr[S]

βqXr,q)
2

)
=

nr∑
q∈Qr[S] sqXr,q

∑
q∈Qr[S] βqXr,q

×
∑

qi,qj∈Qr[S],i<j

siXr,isjXr,j

(
βi
si
− βj
sj

)2

≥ 0. (9)

Next, to prove that PP is an optimal policy, consider the set
of m contents, accessed by the region r in the given coalition
S. Let Qr[S] = {1, · · · ,m}. Let β̃q = βq/sq. Without loss of
generality, we assume that β̃1 ≥ · · · ≥ β̃m. For any traffic
scheduling policy (characterized by its function f(·) as in
(1)), let the portion of capacity nr that is actually used for
serving content q be pq , i.e., nrpq = sqXr,qf(·). Then a
traffic scheduling policy in the considered region r can be
characterized as a vector p′ ∈ A, where

A =
{
p = (pq : q = 1, · · · ,m) |∑

q∈Qr[S]

pq = 1, ∀q, 0 ≤ pq ≤ p̄q, p̄q = sqXr,q/nr

}
. (10)

Note that v(Sr) = nr
∑
q∈Qr[S] pqβ̃q. This worth is max-

imized over the constraint set P by assigning the largest
possible pq in the sequence of β̃q, which is realized by PP.
This completes the proof.

V. STABILITY OF GRAND COALITION

A. Under-demanded Network

In under-demanded networks, RSG was super-additive, as
discussed in Section IV, and thus the worth is maximized at
the grand coalition for any scheduling policy, and the grand
coalition tends to be preferred. However, it is not straight-
forward that the grand coalition is stable in the sense of
Definition III.2, because there may be a smaller coalition in
which the players in that coalition can obtain larger individual
shares than in the grand coalition. Examples that a (coalition)
game is super-additive but unstable include the famous n-
person symmetric majority game [22]. However, in RSG,
as stated in Theorem V.1, the grand coalition is provably
stable with SV, which is only conjectured in [6], [12]. To
explain why, recall that the Shapley value in (3) quantifies
the average marginal contribution, meaning that a player with
higher contribution will be given a higher share. In n-person
symmetric majority game, all players’ contributions on the
coalition worth are the same, thus they equally share the
coalition worth with SV. The majority coalition’s worth is
always one, thus an arbitrary player’s Shapley value under
the grand coalition is always smaller than that under the other
majority coalition.

However, in RSG, the transit ISP is always included in
all the coalition with positive worth, since without the transit
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ISP the traffic is not transported between users and content
ISPs. It implies that the transit ISP’s contribution on the
grand coalition’s worth is larger than or equal to that on other
coalitions’, i.e. ϕT (N ) ≥ ϕT (S), for any S ⊂ N . Then,
the transit ISP becomes a Shapley-advocating player for any
coalition S. Hence, by Definition III.2, the grand coalition
is stable in under-demanded network. Theorem V.1 formally
states that no ISP will stay out of the grand coalition if the
network does not suffer from congestion.
Theorem V.1 (Stability of GC: Under-demanded) In RSG,
the grand coalition is stable with SV for under-demanded
networks.

Proof: If the coalition S′ does not contain the transit
ISP T , then v(S′) = 0. Thus, every ISP in the S′ is
Shapley-advocating ISP for the S′. We claim that the Shapley-
advocating ISP in the coalition S containing T is the transit
ISP T. Note that the grand coalition N is decomposed into
atomic coalitions, Nr,q . For any coalition S ⊆ N , the decom-
posed atomic coalition of S, which is Sr,q , is a subset of Nr,q ,
i.e., Sr,q ⊆ Nr,q . Thus, it is trivial that v(Nr,q) ≥ v(Sr,q).
From (6), the transit ISP’s Shapley portion in Sr,q is given by

φT (Sr,q) =
1

2
− 1

(|Cq[Sr,q]|+ 1)(|Cq[Sr,q]|+ 2)
,

where |Cq[Sr,q]| is the number of content ISPs serving content
q contained in the coalition Sr,q . Then, the Shapley portion
of transit ISP in Nr,q is greater than or equal to that in
Sr,q , i.e., φT (Nr,q) ≥ φT (Sr,q), since |Cq[Nr,q]| ≥ |Cq[Sr,q]|.
Thus, from (5), ϕT (Nr,q) ≥ ϕT (Sr,q). Then, from (4), we
can conclude that ϕT (N ) ≥ ϕT (S), for any S ⊂ N . It
implies that the transit ISP is the Shapley-advocating ISP for
any S ⊂ N . From the Definition of stability III.2, the grand
coalition is stable.

B. Over-demanded Network: Stability Dominance

However, if the network is over-demanded, it is challenging
to describe a “clean” condition under which the grand coalition
is always stable for a given traffic scheduling policy. The
challenge of stability analysis for over-demanded networks
lies in the fact that a player’s actual SV is computed in close
connection with a traffic scheduling policy, which changes the
total worth differently according to the policy’s philosophy.
This complex coupling makes the analysis almost impossible
in general network with multiple transit ISPs and eyeball ISPs.
Thus, we take a comparative approach that when the grand
coalition is stable under some traffic scheduling policy, we
study the conditions that the grand coalition is also stable
under other policies. For that analysis, we first define the
notion of stability-dominance:
Definition V.1 (Stability-dominance) A policy Π is said to
stability-dominate another policy Π′ (for simplicity, we denote
as Π ≥S Π′), if for a given (over-demanded) network, the
stability of the grand coalition under Π′ implies that under Π.

Next, for tractable analysis, we consider a simplified
system that has only one eyeball ISP (i.e., a single region

T

C1
r,q1

C1
r,q3

C3
r,q3

C4
r,q3

B
r
Qr = {q1, q2, q3}

C1

Q1 = {q1, q2, q3}

C2
r,q2

C2
r,q3

Q2 = {q2, q3}
C2

C3

Q3 = {q3}
C4

Q4 = {q3}

C1
r,q2

n X Xq sq βq
100 5 1, 3, 2 30, 65/3, 17 360, 650/3, 153

sqXq βqXq βq/sq
30, 65, 34 360, 650, 306 12, 10, 9

Fig. 3. Example topology: The grand coalition is stable under some policies,
but unstable under other policies. Three values in the table refers to ones for
three contents q1, q2, and q3.

over-demanded network 5) under the heavy content regime. By
heavy content regime, we mean that for a given over-demanded
network, we assume that removing one content in the network
lets the network be under-demanded, i.e., only the grand
coalition is over-demanded and any other smaller coalitions
are all under-demanded. This restriction is not just for tractable
analysis, but also reflects that “light contents”, whose total
traffic volume is not significant, is unlikely to significantly
impact the stability. If needed, we use the subscript T, R, or
P, to explicitly express SV’s dependence on each scheduling
policy, e.g., ϕiP (N ) or ϕiR(N ). Also, we henceforth omit the
subscript r, since we consider a single region network.

We first present Lemma V.1 implying that it suffices to
check the Shapley value of either transit or eyeball ISP to
check the stability of the grand coalition.
Lemma V.1 A policy Π stability-dominates another policy Π′,
if the player i, which is either the transit ISP T or the eyeball
ISP B, satisfies

ϕiΠ(N ) ≥ ϕiΠ′(N ). (11)

Proof: Similarly to the proof of Theorem V.1, if a
coalition S′ ⊂ N does not contain either the eyeball ISP
B or the transit ISP T, then v(S′) = 0. Thus, we only
consider the coalitions S ⊂ N containing both T and B.
From Definition III.2, a policy Π stability-dominates another
policy Π′ if ϕTΠ′(N ) ≥ ϕTΠ′(S) implies ϕTΠ(N ) ≥ ϕTΠ(S),
for all S ⊂ N . Note that we assume heavy-content regime,
thus for all S ⊂ N , S is under-demanded. Therefore, the
SVs under different traffic scheduling policies are the same
for all coalitions S ⊂ N , i.e., ϕiΠ(S) = ϕiΠ′(S),∀S ⊂ N .
Consequently, if ϕiΠ(N ) ≥ ϕiΠ′(N ), then ϕTΠ′(N ) ≥ ϕTΠ′(S)
implies ϕTΠ(N ) ≥ ϕTΠ(S). This completes the proof.

In Lemma V.1, we have proved that the stability dominance
among traffic scheduling policies is determined by SV of either
transit or eyeball ISP at the grand coalition. In the following

5As an extension, we will consider the stability of multi-region network
in Section V-D.
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section, we will compare the traffic scheduling policies in the
context of the stability-dominance for a given network.

C. Impact of Traffic Scheduling Policies on Stability

Example: GC is not always stable even under PP. It is
tempting to conjecture that the grand coalition is stable under
PP, because of the nice properties of PP such as worth max-
imization at the grand coalition and worth optimality across
all possible scheduling policies (see Theorem IV.1). Counter-
intuitively, it is not always true, which is exemplified in Fig. 3.
In this example, the grand coalition is not stable because the
Shapley value of the transit ISP in a smaller coalition can be
larger than that of the grand coalition, i.e., ϕT (N ) = 411.83,
and ϕT (N \ {C1

r,q1}) = 413.63. This instability even in PP
can arise from the characteristic of the Shapley value (or the
Shapley portion): Note that β1/s1 > β2/s2 > β3/s3 from
Fig. 3, but φT (Nq1) < φT (Nq2) < φT (Nq3). It implies that
the grand coalition is not stable since the content q1 has too
small Shapley portion, i.e., q1 is serviced by small number of
content ISPs, even though it is a valuable content.

We now present our main result which compares traffic
scheduling policies in terms of stability. Theorem V.2 states
that a scheduling policy with value-preference is better than
other policies that are more agnostic to content values, under
some mild conditions.

Theorem V.2 (Stability of GC: Over-demanded) When ISPs
share their revenue with Shapley value, for an over-demanded
network under the heavy content regime,

PP ≥S RPP ≥S TPP, (12)

if the following condition is met:

C1:
∑

qi,qj∈Q,i>j
(sisjXiXj)

×
(
φT (Nqi)βi

si
− φT (Nqj )βj

sj

)(
βi
si
− βj
sj

)
≥ 0.(13)

Proof: The proof is based on the description of traffic
scheduling policies in Table II and the worth decomposition
in (2). Using the assumptions of one transit and one eyeball
ISP under the heavy content regime, from a simple algebra it
is not hard to see that the Shapley value of the transit ISP at
the grand coalition is given by:

ϕTR(N ) =
∑
q∈Q

φT (Nq) · vR(Nq)

=
∑
q∈Q

φT (Nq) ·
βqn

sq
· βqXq∑

q∈Q βqXq
, (14)

ϕTT (N ) =
∑
q∈Q

φT (Nq) · vT (Nq)

=
∑
q∈Q

φT (Nq) ·
βqn

sq
· sqXq∑

q∈Q sqXq
. (15)

Thus, using (14) and (15),

1

κ

(
ϕTR(N )− ϕTT (N )

)
=∑

q∈Q

φT (Nq)β2
qX

2
q

sqXq
·
∑
q∈Q

sqXq −
∑
q∈Q

φT (Nq)βqXq ·
∑
q∈Q

βqXq

=
∑
qi,qj
∈Q,i>j

siXisjXj

(
φT (Nqi)βi

si
− φT (Nqj )βj

sj

)(
βi
si
− βj
sj

)
,

where the constant κ > 0 is:

κ =
n∑

q∈Q sqXq ·
∑
q∈Q βqXq

.

Noting that κ is a positive constant, we have: ϕTR(N ) −
ϕTT (N ) ≥ 0 if and only if C1 ≥ 0. Then from Lemma V.1, if
C1 ≥ 0, RPP stability-dominates TPP, i.e., RPP ≥S TPP.

Next, to prove that PP stability-dominates any other poli-
cies, similarly to the proof of Theorem IV.1, consider a set
Q = {1, · · · ,m} of m contents accessed by the region in
the grand coalition N . Let β̃q = βq/sq. Again, without
loss of generality, we assume that β̃1 ≥ · · · ≥ β̃m. For
any traffic scheduling policy, let the portion of capacity n
that is actually used for serving content q be pq (note that
we consider a single region here), i.e., npq = sqXqf(·).
Then a traffic scheduling policy in the grand coalition can
be characterized as a vector p ∈ A, where A is from (10).
Note that v(N ) = n

∑
q∈Q pqβ̃q, and thus the Shapley value

of the transit ISP is ϕT (N ) = n ·∑q∈Q φ
T (Nq)pqβ̃q . If the

condition C1 ≥ 0 is met, it implies that prioritizing higher-
value contents guarantees higher Shapley value of the transit
ISP. Then, this Shapley value is maximized over the constraint
set P by assigning the largest possible pq in the sequence of
β̃q , which is done by PP. This completes the proof.

As showed in the example of Fig. 3, a more profitable
traffic scheduling policy such as PP does not always guarantee
the stability of ISPs’ grand coalition. Instead, Theorem V.2
presents the stability degree of three policies for an over-
demanded network with Shapley value based revenue sharing.
It implies that more profitable traffic scheduling policies tend
to have higher degree of stability when ISPs share their
revenue with Shapley value, which is a balanced and fair
revenue sharing algorithm. In other words, under C1, an over-
demanded network under either RPP or PP is stable (i.e., all
ISPs have stable peerings) with Shapley value whenever the
network is stable under TPP.
When does the condition C1 hold? We cannot theoretically
guarantee that C1 always holds, but the following numerical
example, as shown in Fig. 4, tells us that the condition C1 is
mild. We consider a network consisting of 50 content ISPs,
one transit, and one eyeball ISP. We assign two cases of size-
value distributions, as depicted in Fig. 4(a) and Fig. 4(b),
respectively. Fig. 4(a) is the case that β and s are uniformly at
random over 2500 contents, whereas in Fig. 4(b), the contents
satisfying β <

√
s (excluding the contents with small volume

but high values) are selected. This choice seems somewhat
artificial, but comes from the trend that the content value does
grow in less proportion to the size [29]. Moreover, we assume
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(c) Content ranking and popularity
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(d) C1 under (a) when τ = 0.5
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(e) C1 under (a) when τ = 1
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Fig. 4. Numerical results showing the mildness of the condition C1.

that the total population in the network is 100,000 and we
consider two cases of content popularity by using Zipf-like
distribution with parameter τ = 0.5 and 1, shown as Fig. 4(c)
(both axis are log-scaled).

We vary “content availability” by introducing a con-
tent selection probability p that corresponds to the prob-
ability that a content ISP selects any content (thus, the
mean number of contents owned by one content ISP is
2500 × p). Then, |Cqi | ∼ Binomial(2500, p), for all con-
tents qi. Figs. 4(d), 4(e), and 4(f) show how C1 varies
for p = 0.005, 0.025, 0.25, 0.5, 0.75, 0.9975, 0.995. Figs. 4(d)
(τ = 0.5) and 4(e) (τ = 1) are the results with the size-
value distribution in Fig. 4(a). Fig. 4(f) uses the size-value
distribution in Fig. 4(b) with τ = 1. We see that for all cases,
the condition C1 holds.

To better understand what Theorem V.2 implies, we intro-
duce value-preferential C-ISP, which prefers the higher-valued
contents, i.e., the C-ISP serves content qi rather than qj , if
βi/si > βj/sj . Naturally, it reflects C-ISPs’ inherent desire
to maximize their revenues, since C-ISP can get more revenue
by serving higher-valued contents. Stability of GC is affected
by the value-preferential behavior of C-ISP as described in
following proposition.
Proposition V.1 (Stability with value-preferential C-ISP)
When ISPs share their revenue with Shapley value, for an
over-demanded network under the heavy content regime,

PP ≥S RPP ≥S TPP, (16)

when C-ISPs are value-preferential ones.

Proof: From (13), let cij = (sisjXiXj)×
(φT (Nqi

)βi

si
−

φT (Nqj
)βj

sj

)(
βi

si
− βj

sj

)
. It suffices to show that if βi

si
− βj

sj
> 0,

then φT (Nqi
)βi

si
− φT (Nqj

)βj

sj
> 0. Without loss of generality,

we assume that βi/si > βj/sj . Then, when all C-ISPs are
value-preferential, it is always true that |Cqi | > |Cqj |. Then,
φT (Nqi) > φT (Nqj ) since the Shapley portion of the transit
ISP in the decomposed coalition containing qi is given by:

φT (Nqi) =
1

2
− 1

(|Cqi |+ 1)(|Cqi |+ 2)
.

This completes the proof.

D. Extension to Multi-region Networks

For tractability, our work for stability in Section V is lim-
ited in the sense of network topology since we only consider
single region networks where single eyeball ISP exists. Even
though we assume the limited topology, the rigorous analysis
of stability was still challenging caused by interactions of
traffic scheduling policy and computational complexity of
Shapley value.

In this section, we extend the stability analysis to multi-
region network. The main ideas of extension are (i) the
independence on traffic scheduling policy of each region and
(ii) the independence on coalition worth of each region. Recall
that the traffic scheduling policy f is defined as (1):∑

q∈Qr

sqXr,q · f(sq, βq, nr, Xr,q) ≤ nr

where 0 ≤ f(·) ≤ 1. In above equation, the traffic scheduling
policy f(·) only depends on traffic from a single region r, thus
scheduling policies of multi-region are independent. Moreover,
the coalition worth of grand coalition (2) can be decomposed
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into the worths of single-regional subcoalitions:

v(S) =
∑

r∈R[S]

∑
q∈Qr[S]

v(Sr,q) =
∑

r∈R[S]

{ ∑
q∈Qr[S]

v(Sr,q)

}
. (17)

Thus, the coalition worth of each region is also independent
on that of others. Consequently, the stability of multi-region
networks can be expressed by the stability of single-regional
subcoalitions.
Proposition V.2 (Stability of multi-region network) The
grand coalition of over-demanded multi-region network is
stable for a game (N , v) with Shapley value, if for all r ∈ R,
subcoalition Nr = ∪q∈Qr

Nr,q is stable for a game (Nr, v)
with Shapley value.

Proof: From the definition of the grand coalition in
Definition III.2, the grand coalition N is stable if ∀S ⊂ N ,
∃i ∈ S such that ϕi(N , v,N ) ≥ ϕi(N , v, {S,N \ S}). The
SVs of player i in N and in S ⊂ N are defined by:

ϕi(N , v,N ) =
∑
r∈R

∑
q∈Qr

φi(Nr,q) · v(Nr,q),

and

ϕi(N , v, {S,N \ S}) =
∑

r∈R[S]

∑
q∈Qr[S]

φi(Sr,q) · v(Sr,q),

respectively. Moreover, from the definition of SV,

ϕi(Nr, v,Nr) =
∑
q∈Qr

φi(Nr,q) · v(Nr,q),

ϕi(Nr, v, {Sr,Nr \ Sr}) =
∑

q∈Qr[Sr]

φi(Sr,q) · v(Sr,q),

where Nr = ∪q∈QrNr,q and Sr = ∪q∈Qr[Sr]Sr,q .
We already know that ∀r ∈ R, subcoalition Nr is stable,

thus ∀Sr ⊂ Nr,∃i ∈ Sr such that

ϕi(Nr, v,Nr) ≥ ϕi(Nr, v, {Sr,Nr \ Sr}).

Consequently, we can get this inequality below:

ϕi(N , v,N ) =
∑
r∈R

ϕi(Nr, v,Nr) ≥∑
r∈R[S]

ϕi(Nr, v, {Sr,Nr \ Sr}) = ϕi(N , v, {S,N \ S}).

This completes the proof.
This extension thoroughly shows that our stability analysis

is enough to adopt in practical networks. Still, our study looks
like that it has a level of simplification since we assume
that there exists an eyeball ISP in a region. However, even
there exist multiple eyeball ISPs in a single region, each of
eyeball ISP has its own link capacity connected to transit ISP.
Therefore, an eyeball ISP in the region can consider as an
eyeball ISP who has its own link and own region in which its
customers are. Consequently, the only remaining assumption
is a single transit ISP, the extension to multi-transit ISP would
be future direction of our research.

VI. CONCLUSION AND DISCUSSION

A. Summary

In this paper, we have studied the coalition worth and
the stability of the grand coalition under Shapley value based
revenue sharing. We especially focus on the impact of traffic
scheduling policies on them, where we have considered both
under-demanded and over-demanded networks. The main chal-
lenges for over-demanded networks stem from the complex
inter-plays on how the individual players are assigned their
own share from the worth generated by cooperation, controlled
by the employed scheduling policy. The main messages of
our analysis are: traffic scheduling polices with higher value
preference tend to achieve larger coalition worth and have
better stability features.

People have been worried about the unfair sharing of the
revenue in the Internet [3], [4], and some of the recent works
[6], [13]–[16] have claimed that the cooperation of ISPs helps
with fair sharing and is beneficial to both ISPs and users.
However, it has still been questionable whether providers are
willing to cooperate. Our work provides an answer but to such
a question of stability of the ISPs’ cooperation. We consider
two cases when the network is congested and uncongested,
and conclude that when the network is uncongested, ISPs have
strong tendency to cooperate, whereas when congested, ISPs’
cooperation highly depends on how the traffic from content
providers is differentiated by the network service providers.

The implications to providers include: (a) In case when
network capacity is enough to handle the Internet traffic, ISPs
have enough incentive to form a coalition, but (b) in case
when capacity increase does not follow traffic increase and
the network is congestion often, the network ISPs (i.e., transit
and eyeball ISPs) should give more priority to the content
traffic with more values to stabilize their cooperation. These
implications may provide a clue to why cooperation is very
difficult in practice, because content-aware traffic management
adds high complexity in network operation, and network
neutrality is still a burden to them.

B. Limitation and Future Work

We consider a network that has only one transit ISP and
in the section that discusses stability of the coalition of over-
demanded networks, we further assume that there exists only
one region with only one eyeball ISP. We have relaxed the
assumption on only one region in Section V-D, however, we
still need an assumption of a single transit ISP for tractability.
Thus, naturally, future work includes the study of the cases
when there exists multiple transit ISPs, where some kind of
approximation techniques such as fluid-model approximation
or large-scale asymptotic may be necessary.
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